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We analyze the isotropic component of turbulent flows spanning a broad range or Reynolds numbers. The
aim is to identify scaling laws and their Reynolds number dependence in flows under different mechanical
forcings. To this end, we applied an SO�3� decomposition to data stemming from direct numerical simulations
with spatial resolutions ranging from 643 to 10243 grid points, and studied the scaling of high order moments
of the velocity field. The study was carried out for two different flows obtained forcing the system with a
Taylor-Green vortex or the Arn’old-Beltrami-Childress flow. Our results indicate that helicity has no significant
impact on the scaling exponents as obtained from the generalized structure functions. Intermittency effects
increase with the Reynolds number in the range of parameters studied, and in some cases are larger than what
can be expected from several models of intermittency in the literature. The observed dependence of intermit-
tency with the Reynolds number decreases if extended self-similarity is used to estimate the exponents.

DOI: 10.1103/PhysRevE.81.016310 PACS number�s�: 47.27.ek, 47.27.Ak, 47.27.Jv, 47.27.Gs

I. INTRODUCTION

Turbulence is a recurring phenomenon in nature; we can
find turbulent dynamics in atmospheric, geophysical, and as-
trophysical flows. The dynamics of these flows is often de-
scribed by identifying three characteristic ranges of scales
�1�: the injection range, whose properties depend on the forc-
ing; the inertial range, which is assumed to have universal
properties in the limit of infinite Reynolds number; and the
viscous range, where dissipation takes place. In three-
dimensional isotropic and homogeneous turbulence, the scale
separation between the forcing and the viscous range �i.e.,
the width of the inertial range� increases as a known power
of the Reynolds number. Nowadays, computing power is
scarcely sufficient to study in direct numerical simulations
�DNS� flows with these three ranges well resolved. Even in
the few simulations where an incipient scale separation is
achieved �2–4�, an exploration of the parameter space to
build confidence on such assumptions as universality of in-
ertial range properties is currently out of reach.

In a recent study �5� numerical simulations up to spatial
resolutions of 10243 grid points were performed using differ-
ent forcing functions, including coherent and delta correlated
in time forcing, as well as using mechanisms that injected
only energy or both energy and helicity into the flow. From
numerical simulations �6–9� it is known that helical and non-
helical isotropic and homogeneous turbulence follows a Kol-
mogorov scaling in the inertial range, albeit intermittency
corrections. However, in �5� a departure in the scaling expo-
nents of higher order moments between helical and nonheli-
cal simulations was found. It was unclear whether these de-
partures were associated to a dependence with the helicity
content of the flow, or with anisotropies generated by the
different forcing functions acting on the large scale. Other
studies reported a dependence of the intermittency of the
energy flux �7�, or dependence of the recovery of isotropy on
helicity-dependent statistical quantities on the amplitude of
the helicity flux �10�. Shell model studies �11� also reported

subleading corrections to scaling laws associated to the pres-
ence of helicity.

In this work, we use the SO�3� decomposition �12,13�
�see also �14� for a review� to separate the isotropic and
anisotropic components of a turbulent flow. To deal with the
size of our data sets, the method is implemented numerically
as described in �15�. Previous studies focused on the scaling
of the anisotropic sectors �see, e.g., �16–19�� from data stem-
ming from numerical simulations or experiments, as it has
been conjectured that both the isotropic and anisotropic sec-
tors of turbulent flows may follow universal scaling laws in
the inertial range �see, e.g., �13,19��, and as for the third
order structure function it has been rigorously shown that the
“four-fifth law” holds in the isotropic sector even in the pres-
ence of anisotropies �12,20�. A dimensional prediction for
the scaling of the generic anisotropic sectors has also been
put forward �19�. Evidence of possible universality of scaling
laws in the anisotropic sector have been further obtained us-
ing the SO�3� decomposition in Rayleigh-Benard convection
�21,22� and in the random Kolmogorov flow �23�. These
studies also showed �albeit in simulations or experiments at
moderate Reynolds numbers� that the use of the SO�3� de-
composition improves the convergence of high order mo-
ments of the velocity field �13,18�. For the determination of
just the third order scaling exponent, studies of the isotropic
component have been done up to spatial resolutions of 5123

grid points �15�. However, less attention has been paid to
comparisons of the scaling exponents in the isotropic sector
for orders other than second or third, and to comparisons of
these exponents for different forcing functions in simulations
at large spatial resolution. Considering the differences re-
ported in helical and nonhelical turbulence, it seems reason-
able to consider such flows for a comparison. Here, we use
velocity fields stemming from six DNS with spatial resolu-
tions ranging from 643 to 10243 grid points, using either
helical or nonhelical forcing mechanisms. Velocity incre-
ments and scaling exponents in the inertial range are com-
puted for all runs, up to eight order for the simulations with
the larger spatial resolution.
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The analysis indicates that helicity has no measurable ef-
fect on the scaling exponents of the velocity field, with the
differences observed in the exponents stemming from the
different runs being within error bars, ascribable to sensitiv-
ity to the fitting range, or to Reynolds number dependence.
Moreover, we find that in some cases intermittency �as mea-
sured from the departure of the linear dependence of the
scaling exponents with the order, associated to the develop-
ment of strong events in the velocity field� increases with the
Reynolds number in the range of parameters studied, indicat-
ing convergence of high order moments to their infinite Rey-
nolds number limit is slow and may have not been achieved
even in the largest numerical simulations up to date. The
Reynolds number dependence decreases a little bit when ex-
tended self-similarity �ESS� �24,25� is used. Finally, our re-
sults are in agreement with previous studies showing that the
use of the SO�3� decomposition improves scaling laws and
the determination of scaling exponents.

The structure of the paper is as follows. Section II briefly
describes the numerical simulations. Section III introduces
the SO�3� decomposition and describes the method we use to
apply the decomposition to our data, based on the method
proposed in �15�. Section IV discusses the 4/5 law and the
energy scaling in the isotropic sector of the velocity fields.
Section V presents the scaling laws obtained in the inertial
range for the different moments of the velocity field. Also, a
comparison between helical and nonhelical flows is done, as
well as a comparison with models of intermittency. Section
VI is devoted to the analysis of the scaling exponents when
ESS is used, and to a comparison of the exponents when
absolute values are used in the definition of the structure
functions or not. Finally, Sec. VII presents the conclusions.

II. NUMERICAL SIMULATIONS

The data sets we use for the analysis stem from DNS that
solve the momentum equation for an incompressible fluid
with constant mass density. The Navier-Stokes equations un-
der these conditions read

�v

�t
+ v · �v = −

�p

�
+ f + ��2v , �1�

� · v = 0, �2�

where v is the velocity field, p is the pressure, f is an external
force that drives the turbulence, � is the kinematic viscosity,
and � is the mass density of the fluid �set to unity here in
dimensionless units�. The mode with the largest wave vector
in the Fourier transform of f is defined as the forcing wave
number kf, with the forcing scale given by Lf =2� /kf.

Equations �1� and �2� are solved using a parallel pseu-
dospectral code in a three-dimensional box of size 2� with
periodic boundary conditions �26,27�. We use three different
spatial resolutions: 643, 2563, and 10243 grid points. The
equations are evolved in time using a second order Runge-
Kutta method, and the code uses the 2/3 rule for dealiasing.
Reynolds numbers quoted are based on the integral scale and
defined as Re=UL /�, where U= �v2�1/2 is the rms velocity
and the integral scale L is defined as

L = 2�
�E�k�k−1dk

�E�k�dk
, �3�

with E�k� the energy spectrum such that the total energy is
E=�E�k�dk.

We examine two different flows, generated by different
volume forces f that are either nonhelical or fully helical �we
consider a forcing function fully helical when �f ·�� f� is
maximal and nonhelical when �f ·�� f� is zero, with the
brackets denoting spatial average�: the Taylor-Green �TG�
vortex �4�, and the Arn’old-Beltrami-Childress �ABC� flow
�5�. The former is nonhelical, and the resulting flow has no
net helicity, although spatially localized regions with positive
or negative helicity develop. The latter is fully helical, and
the resulting flow therefore has helicity �where the flow he-
licity is defined as H= �u ·��u�� �28,29�.

When using the TG vortex as a forcing function, we pre-
scribe f as

fTG = f0�sin�kfx�cos�kfy�cos�kfz�x̂

− cos�kfx�sin�kfy�cos�kfz�ŷ� , �4�

while the ABC forcing is given by

fABC = f0��B cos�kfy� + C sin�kfz��x̂ + �A sin�kfx�

+ C cos�kfz��ŷ + �A cos�kfx� + B sin�kfy��ẑ	 . �5�

Here f0 is the forcing amplitude, which was set to have in the
turbulent steady state all runs with rms velocities near unity.
For ABC forcing, the constants were chosen to be A=0.9,
B=1, and C=1.1. Table I shows the parameters for all the
runs. More details about the runs, and a detailed analysis of
energy spectra, fluxes, and energy transfer, can be found in
�5,30�.

III. SO(3) DECOMPOSITION

The isotropic component of the longitudinal velocity
structure functions for each flow is extracted using the SO�3�
decomposition following the method described in �15�. Some
modifications were made considering the size of our simula-
tions and to obtain a parallel version compatible with the
way data is distributed among computing nodes. In this sec-
tion we briefly introduce the method described in �15� and
give details of our implementation.

TABLE I. Parameters used in the simulations. N is the linear
resolution, f is the forcing �either TG or ABC�, kf is the forcing
wave number, � is the kinematic viscosity, and Re is the Reynolds
number.

Run N f kf � Re

T1 64 TG 2 5�10−2 40

T2 256 TG 2 2�10−3 675

T3 1024 TG 2 3�10−4 3950

A1 64 ABC 3 4�10−2 70

A2 256 ABC 3 2�10−3 820

A3 1024 ABC 3 2.5�10−4 6200
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To do the SO�3� decomposition and recover the isotropic
component, the longitudinal velocity structure function of
order p is decomposed in terms of the spherical harmonics
Ylm, obtaining

Sp�l� = ���v�r� − v�r + l�� · l̂	p� = 

jm

Sp
jm�l�Y jm�l̂� , �6�

where the brackets denote spatial average over the variable r,
and homogeneity is assumed. The coefficients Sp

jm are ob-
tained by projecting Sp�l� into the spherical harmonics, or
equivalently, by projecting the pth power of the longitudinal
increments

�v�r,l� = �v�r� − v�r + l�� · l̂ �7�

into the spherical harmonics and averaging over r. We are
interested in the isotropic sector, given by the Sp

00�l� func-
tions,

Sp
00�l� =

1

4���0

2� �
0

�

�vp�r,l�l2 sin���d�d� , �8�

where the angles � and � are associated to the vector l. It is
also useful to introduce the generalized structure functions

Gp�l�= ���v�r�−v�r+ l�� · l̂�p� using the absolute value of the
longitudinal increments �see, e.g., �31��. It has been reported
�24,25� that both Gp and Sp follow scaling laws, although the
use of absolute values in Gp increases the range of scales
where power laws are observed. In the following, we will use
Gp for all runs in Table I, and Sp to compare when possible
�see Sec. VI for more details�. Gp can be decomposed as Sp
into its isotropic component G00 using the absolute value of
the velocity increments in Eq. �8�.

The discrete version of the Eq. �8�, and therefore the ex-
pression used in the numerical code to carry out the decom-
position, is

Sp
00�l� =

1

NdN3

j=1

Nd



i=1

N3

�vp�ri,l j� , �9�

where N is the linear resolution and Nd is the number of
directions used to compute the average over the sphere.

In Ref. �15� it was shown that 146 different directions l j
covering in an approximately uniform way the sphere can be
generated on a regular grid in such a way that all integer
multiples of l j lie on a grid point. This avoids the need to use
three-dimensional interpolations to compute the longitudinal
increments �v�ri , l j� when r+ l does not lie on a grid point,
significantly reducing the computational cost of the decom-
position. The 146 directions are generated by the vectors
�1,0,0�, �1,1,0�, �1,1,1�, �2,1,0�, �2,1,1�, �2,2,1�, �3,1,0�,
�3,1,1� and those that are obtained by permuting their com-
ponents in every possible way �including multiplication of
the vectors by −1�. With periodic boundary conditions, nega-
tive multiples of the vectors are not needed, since a spatial
average over the entire box with the increment l j gives the
same result as the average with −l j. This reduces Nd in Eq.
�9� to 73.

The code we use to solve the Navier-Stokes equations is
parallelized using a two-dimensional domain decomposition

�26,27�. Each computing node stores a slice of the velocity
field in real space of size N�N�Nz �Nz�N, with Nz a func-
tion of the number of computing nodes�. As a result, incre-
ments in Eq. �9� in the x and y directions can be computed
locally in each node. However, increments in the z direction
require communication which is handled using the message
passing interface �MPI� library. The sum in Eq. �9� is then
computed as follows: for each increment l j, displacements of
the velocity field in the x and y direction are computed.
Communication is then performed to displace the velocity
field in the z direction if needed, and �v�ri , l j� is computed
for all values of ri. Finally, the sum over all ri is done. The
process is repeated for integer multiples of l j by just displac-
ing the already displaced velocity field on l j over and over
again. In this way, all communications are done between
nearest neighbors avoiding all-to-all communications.

IV. 4/5 LAW AND THE ENERGY SPECTRUM

The result of computing the generalized third order struc-
ture functions for the 73 directions using the T3 data set is
shown in Fig. 1. The average over all directions �computed
using a procedure similar to the one described in �15�� is also
shown. From the 4/5 law �32�, we expect the third order
structure function to scale as the increment l in the inertial
range. This is indeed the case for the average �the isotropic
component� in a wide range of scales �even using the abso-
lute value�, while the structure function in each direction
may or may not follow this law. In the dissipative range,
where the flow becomes regular, a scaling �l3 is observed
for all curves.

That the generalized third order structure function scales
as �l in the inertial range has been observed before �31�.
However, to see if the data is consistent with the 4/5 law the
structure functions S3�l� and S3

00 must be computed. This is
shown in Fig. 2, which presents the third order structure
function compensated by 	l. The amplitude of S3

00�l� in the
inertial range is close to the expected −4	l /5 value.

At lower Reynolds number �and spatial resolution� scal-
ing in the inertial range can still be identified although the
width of the scaling range decreases. This is illustrated in
Fig. 3 using the isotropic second order structure function

FIG. 1. Third order structure functions G3�l� and isotropic com-
ponent G3

00�l� as a function of l for the T3 �nonhelical� run. Gray
dots correspond to the 73 different directions while the thick solid
line is the G3

00�l� average. The straight lines indicate �l3 and �l
scaling.
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G2
00�l�=S2

00�l� for runs T1, T2, and T3. The scaling in the
inertial range of this function is associated with the scaling in
the same range of scales of the isotropic energy spectrum.
According to Kolmogorov theory �hereafter, K41� �32�, the
second order structure function scales as �l
2 with 
2=2 /3,
which implies in turn an energy spectrum E�k��k−�
2+1�

=k−5/3. The slope of the structure functions in Fig. 3 is
slightly larger than 2/3, an effect associated to intermittency
as discussed in more detail in the next section.

At this point it is worth introducing two ways to measure
dispersion and errors in the determination of the exponents in
the structure functions. We will use the mean square error of
the exponent resulting from the least square fit, as defined,
e.g., in �33�. This error we will denote as e. We will also use

� = � 1

Nd


j=1

Nd

�
2
�j� − 
2�2�1/2

�10�

which is the standard deviation of the exponents when com-
paring the average value �over all directions� 
2 with the
value obtained doing a least square fit in each direction 
2

�j�.
While e gives information about the quality of the fit �how
much the average curve over all directions deviates from a
straight line in the range of scales considered�, the latter
gives information about how much the exponents fluctuate

around their mean when considering the individual directions
�as illustrated, e.g., by the dispersion in the slopes of the
dotted lines in Fig. 1�. From Figs. 1 and 2 it is clear that �
will be substantially larger than e.

As an example, a best fit to the power law in the second
order structure function of the run T3, using the range of
scales where G3

00 follows an approximate �l law, gives 
2
=0.702�0.004�0.07�, where the notation of the error gives
the mean square error e followed by the standard deviation �
between parenthesis. Remarkably, at lower resolutions we
also recover deviations from the K41 prediction for 
2 and
the energy spectrum, with run T2 giving 
2
=0.69�0.01�0.1� and run T1 giving 
2=0.69�0.04�0.2�.
The second order isotropic structure functions for the ABC
runs follow in the inertial range similar power laws, with
slopes 0.67�0.04�0.1�, 0.695�0.006�0.1� and
0.703�0.003�0.06�, respectively, for the resolutions of 643,
2563, and 10243 grid points. The six values are within error
bars. At large Reynolds numbers, S2�l�00 is close to �l−0.7

and the energy spectrum close to E�k��k−1.7 for both helical
and nonhelical cases, which is slightly steeper than �k−5/3.
This result is consistent with the result obtained from the
largest simulation of isotropic and homogeneous turbulence
done up to the moment using 40963 grid points �4,34�, and
with other simulations at large spatial resolution and Rey-
nolds number �see, e.g., �2��.

V. INTERMITTENCY

A. High order moments and anomalous scaling

Overall, the functions Sp�l� and Gp�l� for all values of p
studied display, after averaging over all directions, a dissipa-
tive range that goes as �lp, an inertial range following some
power law, and a range at large scales that depends on the
forcing. Each individual direction behaves as the average,
although the structure functions for each direction show
larger fluctuations and dispersion, specially at large scales.
This can be understood in terms of anisotropies associated to
the forcing which prevail at large scales. The differences
between particular directions and the isotropic component
decrease as the Reynolds number increases.

According to K41 theory, the longitudinal structure func-
tions of order p should scale in the inertial range as Sp

00�l�
� lp with p= p /3, where p are the scaling exponents. This
scaling corresponds to a scale invariant �nonintermittent�
flow. However, turbulence comes in gusts and regions with
strong gradients do not fill the entire space. In practice,
strong events are localized in space and time, and the prob-
ability of finding strong gradients at small scales is larger
than what can be expected from a Gaussian distribution. In-
termittency leads to anomalous scaling �deviations from the
p= p /3 relation�, as the higher the order the more important
are the contributions from these strong events. For the energy
spectrum, the scarcity of the small scales is responsible for
the steeper than k−5/3 energy spectrum discussed in the pre-
vious section.

In experiments and simulations �31� it has been observed
that the generalized structure functions Gp�l� scale in the
same way as the Sp�l� functions �with the scaling range often

FIG. 2. Third order structure functions −S3�l� compensated by 	l
for the same run as in Fig. 1. The average −S3

00 /	l is indicated by
the thick solid line. The horizontal line indicates 4/5.

FIG. 3. Isotropic component of the second order structure func-
tion G2

00�=S2
00� for the nonhelical runs T1, T2, and T3 with increas-

ing Reynolds number. The slopes of 2/3 and 2 are shown as refer-
ences. The inset shows the three structure functions compensated by
2/3.
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improved�. Here, and following the notation of the previous
section, we will denote the scaling exponents obtained for
Gp

00�l� as Gp
00� l
p. The dependence of the Gp

00�l� with the
order is illustrated in Fig. 4. This figure shows the general-
ized isotropic structure functions from p=1 to 8 for runs T3
and A3. Only a range of scales near the inertial range is
shown. In the inertial range, the longitudinal structure func-
tions show approximate scaling laws of the form Gp

00�l�
� l
p as expected. As p increases, the scaling exponent 
p
increases monotonically. To check convergence of the struc-
ture functions and exponents, we computed the accumulated
moments �2,3�, and verified that there is convergence up to
the eight order for these two runs �see, e.g., �2� for the accu-
mulated moments in run T3 for the average in only two
particular directions�. For the runs with lower resolution, we
computed structure functions up to the order p according to
the convergence of their accumulated moments.

Let us now consider the scaling exponents 
p in the iner-
tial range of all runs �where we define the inertial range as
the range of scales where G3

00� l scaling holds�. We start
comparing the dependence of these exponents with the Rey-
nolds number for the nonhelical runs. Figure 5 shows 
p
from the isotropic generalized structure functions for the
three runs with TG forcing. The 
p= p /3 linear relation is
indicated by the straight line. As previously mentioned, de-
viations of the 
p exponents from the straight line are an
indication of intermittency. Remarkably, the scaling expo-
nents for the runs at lower Reynolds number are closer to the
straight line than the exponents of the run at the largest Rey-

nolds number, indicating intermittency still increases with
the scale separation in the range of Reynolds numbers stud-
ied, and that more spatial resolution is required to reach con-
vergence with Reynolds number for high order moments.
Figure 5 also shows the same results for the ABC runs. For
this flow, a similar dependence of the exponents with the
Reynolds number can be identified.

Figure 6 shows the dependence of the second and fourth
order scaling exponents for all runs as a function of the Rey-
nolds number. Because of the different forcing functions
used, even when comparing runs at the same resolutions the
Reynolds numbers are slightly different. The second order
exponent 
2 slowly grows with Re, and seems to saturate for
the largest Reynolds numbers reached. Note however that all
values are within error bars �based on the error e�. For 
4 a
decrease with the Reynolds number is observed, and in this
case not all values are within error bars. The increase of the
intermittency with Reynolds number is more pronounced
when the intermittency exponent �=2
3−
6 is studied as a
function of Re �see Fig. 7; only the runs at larger Reynolds
numbers are shown, as determination of � requires the sixth
order exponent�. For the runs at the larger spatial resolution

(b)(a)

FIG. 4. Above: Gp
00�l� structure functions as function of the

increment l for p from 1 to 8 for the nonhelical T3 run. G3
00�l� is

indicated by the thick curve. Only a range of scales near the inertial
range is shown. Below: same for the isotropic generalized structure
functions for the helical run A3. In both figures, the error bars
correspond to the error e.

(b)(a)

FIG. 5. Above: scaling exponents 
p in the nonhelical runs with
increasing Reynolds number T1 �diamonds�, T2 �crosses�, and T3
�triangles�. The K41 prediction is given as reference. Below: same
exponents for the helical runs A1 �diamonds�, A2 �crosses�, and A3
�triangles�.

FIG. 6. Second order �above� and fourth order �below� scaling
exponents as a function of the Reynolds number for all runs �tri-
angles are for helical forcing and crosses for nonhelical forcing�.
Error bars correspond to the error e. The dotted line shows the same
exponents using ESS.

FIG. 7. Intermittency exponent as a function of the Reynolds
number for the four runs at larger Reynolds number �labels as in
Fig. 6�. As in Fig. 6, the dotted line show the intermittency expo-
nent when ESS is used.
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we obtain �=0.28�0.02 and �=0.30�0.01, respectively,
for T3 and A3, while for runs T2 and A2 we find �
=0.23�0.07 and �=0.22�0.03, respectively. Our values
for the highest Reynolds numbers agree with measurements
made by Meneveau and Sreenivasan �35� where they ob-
tained �=0.26�0.03 �see also �36��.

B. Role of helicity

To study whether previously reported differences between
helical and nonhelical isotropic and homogeneous turbulence
are associated to the presence of helicity or to anisotropies
related to the forcing functions, we now focus on the data
sets with the largest spatial resolution. Figure 8 shows the
scaling exponents 
p as a function of p up to the eight order
for runs T3 and A3. The K41 prediction is shown as a refer-
ence, together with different models of intermittency: the
log-normal model �37�,


p =
p

3
+

�

18
�3p − p2�; �11�

where � is the intermittency exponent previously defined,
the She-Leveque model �38�,


p =
p

9
+ 2�1 − �2

3
�p/3�; �12�

the mean-field approximation �39�


p =
1.15

3�1 + 0.05p�
p; �13�

and the model of Arimitsu and Arimitsu �40,41�,


p =
�0p

3
−

2Xp2

9�1 + Cp/3
1/2�

−
1

1 − q
�1 − log2�1 + Cp/3

1/2�� ,

�14�

where

Cp/3 = 1 + 2� p

3
�2

�1 − q�X ln�2� , �15�

and the quantities �0, X, and q are determined from the in-
termittency exponent � following the expressions in Refs.
�40,41�.

The She-Leveque model and the mean-field approxima-
tion have no free parameters, while the log-normal model
and the model of Arimitsu and Arimitsu depend solely on the
intermittency exponent. For the log-normal model, we use
�=0.28 which is compatible with the value found in the A3
and T3 runs and also consistent with experimental results
�35�. Arimitsu and Arimitsu state that for infinite Reynolds
number �=0.22 should be used in their model, and in �41�
give explicit values for �0, X, and q for this case. These are
the values we use in Fig. 8, and when plotting the model
with values corresponding to larger values of � we observed
an improvement in the model although measurable differ-
ences for the highest orders persist. The best fit to the data is
given by the log-normal model, although it is well known
that for higher order moments the model will fail as its ex-
ponents do not increase monotonically with p. The data de-
viates from all the models.

Table II shows a comparison of the 
p exponents of the
isotropic sector for the helical and nonhelical runs at the
largest spatial resolution. Except for the highest order com-
puted, differences are within error bars, indicating that pre-
viously reported differences measured without the SO�3� de-
composition were associated to contributions from the
anisotropic sector. The small discrepancy observed for p=8
may be related to Reynolds number dependence, as runs A3
has a slightly larger Reynolds number than run T3, and as it
was noted before, the higher order exponents slowly de-
crease as the Reynolds number is increased. Other possible
causes for this dependence are considered in the next section.

VI. EXTENDED SELF-SIMILARITY AND COMPARISON
OF SCALING EXPONENTS

So far we have studied the scaling laws corresponding
mostly to the generalized structure functions Gp�l�=Apl
p. As
mentioned before, it was observed �31� that these functions

FIG. 8. Comparison between the 
p exponents from the nonhe-
lical T3 �crosses� and helical A3 runs �triangles�. Shown as a refer-
ence are the K41 �solid straight line�, log-normal �dash�, mean field
�dotted�, She-Leveque �dash-dotted�, and Arimitsu and Arimitsu
�solid� predictions. The mean-field model and Arimitsu and Arim-
itsu model are indistinguishable. The inset shows a zoom for the
highest order moments, with error bars based on the error e.

TABLE II. Comparison of scaling exponents in helical and non-
helical flows at the largest Reynolds number studied; p is the order,

A3 are the isotropic scaling exponents of the helical run, 
T3 are the
exponents of the nonhelical run, and 
A3−
T3 is their difference.

p 
T3 
A3 
A3−
T3

1 0.372�0.002 0.373�0.001 0.001�0.003

2 0.702�0.004 0.703�0.003 0.000�0.007

3 0.998�0.005 0.999�0.004 0.00�0.01

4 1.263�0.007 1.263�0.005 −0.00�0.01

5 1.500�0.009 1.495�0.006 −0.00�0.01

6 1.71�0.01 1.700�0.007 −0.01�0.01

7 1.90�0.01 1.877�0.008 −0.02�0.02

8 2.07�0.01 2.028�0.009 −0.04�0.02
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follow scaling laws similar to the ones followed by the struc-
ture functions Sp�l�=Bplp. Moreover, there is an alternative
way to express these scaling laws using the Kolmogorov 4/5
law

Gp�l� = Ap��G3�l��
p
ESS

, �16�

or

Sp�l� = Bp��G3�l��p
ESS

; �17�

experiments and numerical data show that when these ex-
pressions are used the range of scales where power laws are
observed grows significantly �see, e.g., �31��. This is often
referred to as extended self-similarity �ESS� �24,25�. In this
section, we compare in more detail the scaling exponents 
p
and p �with and without absolute values; i.e., corresponding,
respectively, to the functions Gp and Sp�, and the exponents
resulting from the ESS analysis 
p

ESS and p
ESS, for the runs at

the larger resolution �T3 and A3�. Note that G3 is often used
in ESS �see Eqs. �16� and �17�� instead of S3 as the reference
function that scales linearly with l.

Table III shows 
, , 
ESS, and ESS for run T3, while Table
IV shows the same exponents for run A3. Note that p and 
p
differ for even values of p as different ranges of scales are
used depending, respectively, on the range for which Sp

00� l
or Gp

00� l holds. We explicitly give the ranges of scales used
for the fit in each simulation in Table V. The ranges substan-

tially increase as p, 
p, p
ESS, and 
p

ESS are computed �as a
reference, the forcing acts at Lf �2, and the smallest re-
solved scale is �0.006 in both runs�.

Two comments are in order. First, when the exponents are
computed without absolute values and without ESS �p�,
large fluctuations are observed in each direction for odd val-
ues of p, which results in a large dispersion �. However, the
p exponents are in some cases closer to the values from the
She-Leveque model. Second, in the other cases and even
after using ESS, the exponents are more intermittent than
what is predicted by the She-Leveque model �see �3� for
similar results using isotropic random forcing�. However, the
use of ESS makes the dependence of the exponents with the
Reynolds number decrease �specially for small Reynolds
numbers� as has been reported before �24,25,31�. This is il-
lustrated by the dotted line in Figs. 6 and 7.

VII. CONCLUSIONS

In this work we studied scaling exponents and intermit-
tency in the isotropic sector of turbulent flows at different
Reynolds numbers, generated by Taylor-Green forcing and
by Arn’old-Beltrami-Childress forcing. The first is nonheli-
cal while the latter is maximally helical. The spatial resolu-
tions were 643, 2563, and 10243 grid points, with the Rey-
nolds number �based on the integral scale� ranging from 40
to 6200.

A dependence of the intermittency corrections with the
Reynolds number was found, with a larger intermittency ex-

TABLE III. Scaling exponents  �without absolute values�, 
 �with absolute values�, ESS, and 
ESS �same as  and 
 but also using ESS�
for the nonhelical run at the larger resolution T3, as a function of the order p. The exponents from the She-Leveque model are given as a
reference.

p T3 
T3 T3
ESS 
T3

ESS She-Leveque model

1 0.372�0.002�0.04� 0.3721�0.0001�0.008� 0.364

2 0.749�0.003�0.07� 0.702�0.004�0.07� 0.7027�0.0001�0.008� 0.7043�0.0001�0.007� 0.696

3 0.999�0.004�0.2� 0.998�0.005�0.1� 1 1 1

4 1.356�0.006�0.1� 1.263�0.007�0.1� 1.2664�0.0001�0.01� 1.2640�0.0001�0.01� 1.280

5 1.570�0.007�0.4� 1.500�0.009�0.1� 1.419�0.003�0.1� 1.5000�0.0002�0.03� 1.538

6 1.851�0.007�0.1� 1.71�0.01�0.1� 1.7190�0.0004�0.06� 1.7109�0.0004�0.05� 1.778

7 2.039�0.008�0.6� 1.90�0.01�0.2� 1.846�0.003�0.2� 1.8992�0.0006�0.07� 2.001

8 2.251�0.009�0.1� 2.07�0.01�0.2� 2.0797�0.0008�0.1� 2.0667�0.0008�0.09� 2.210

TABLE IV. Scaling exponents , 
, ESS, and 
ESS as in Table III but for the helical run at the larger resolution A3.

p A3 
A3 A3
ESS 
A3

ESS She-Leveque model

1 0.373�0.001�0.03� 0.3706�0.0002�0.007� 0.364

2 0.703�0.003�0.07� 0.703�0.003�0.06� 0.7027�0.0004�0.008� 0.7028�0.0001�0.007� 0.696

3 0.999�0.004�0.2� 0.999�0.004�0.08� 1 1 1

4 1.311�0.006�0.09� 1.263�0.005�0.1� 1.264�0.001�0.01� 1.2656�0.0001�0.01� 1.280

5 1.545�0.006�0.2� 1.495�0.006�0.1� 1.430�0.003�0.1� 1.5027�0.0003�0.03� 1.538

6 1.764�0.008�0.1� 1.700�0.007�0.1� 1.7072�0.0004�0.06� 1.7135�0.0006�0.05� 1.778

7 1.978�0.008�0.8� 1.877�0.008�0.1� 1.854�0.002�0.1� 1.900�0.001�0.08� 2.001

8 2.09�0.01�0.1� 2.028�0.009�0.2� 2.046�0.001�0.1� 2.064�0.001�0.1� 2.210
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ponent as the Reynolds number was increased. When the
SO�3� decomposition was used, no dependence of the level
of intermittency with the helicity content in the flow was
observed, and small differences at the highest order studied
may be due to Reynolds number dependence of the expo-
nents or to sensitivity of the fitting.

When comparing with models of intermittency in the lit-
erature, it was found that the data are more intermittent than
predictions from the She-Leveque model, the mean-field ap-
proximation, and the model of Arimitsu and Arimitsu. In
spite of the well known problems with the log-normal model,
this model gives the best fit to our data �however, it should
be remarked that the log-normal model will fail to fit higher
order moments than the ones computed here�. It is unclear to
us what is the origin of the strong intermittency observed,
but we note that similar results were also reported in numeri-
cal simulations using isotropic random forcing �3�. In this
context, it is interesting to question the need to develop new
models of intermittency without better data or a deeper un-

derstanding of the origin of intermittency in homogeneous
and isotropic turbulent flows.

Using absolute values in the definition of the structure
functions or using ESS substantially decreases errors in the
determination of the exponents. Overall, the combination of
SO�3�, ESS, and the high spatial resolution of the simula-
tions makes the errors e of the least square fit too small to
extract from them information beyond the goodness of the fit
for a particular snapshot of the velocity field. Fluctuations of
the exponents for the increments in different spatial direc-
tions, quantified by the dispersion �, are substantially larger
and the errors of the exponents are in practice bounded be-
tween e and �. The comparison between the exponents and
errors thus obtained gives some information on the sensitiv-
ity of the exponents with the fitting range. Finally, when ESS
is used the dependence of the exponents with the Reynolds
number is decreased, specially for the runs at lower Reynolds
number.
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